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i& ABSTRACT

This paper presents an algorithm for the minimization of a nonlinear objective
function subject to nonlinear inequality and equality constraints. The proposed
method has the two distinguishing properties that, under weak assumptions, it con-
verges to a Kuhn-Tucker point for the problem and under somewhat stronger assump-
tions, the rate of convergence is quadratic. The method is similar to a recent
method proposed by Rosen in that it begins by using a penalty function approach to
generate a point in a neighborhood of the optimum and then switches to Robinson's
method. The new method has two new features not shared by Rosen's method. First,
a correct choice of penalty function parameters is constructed automatically, thus
guaranteeing global convergence to a stationary point. Second, the linearly con-
strained subproblems solved by the Robinson method normally contain linear
inequality constraints while for the method presented here, only linear equality
constraints are required. That is, in a certain sense, the new method "knows"
which of the linear inequality constraints will be active in the subproblems. The
subproblems may thus be solved in an especially efficient manner.

Preliminary computational results are presented.
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SIGNIF ICANCE AND EXPLANATION

This paper presents a computational method for solving the problem
of minimizing a nonlinear function subject to nonlinear inequality and
equality constraints. Such optimization problems need to be sclved in
many practical applications, and one of the difficulties to which most
numerical algorithms are subject is that of finding a starting point
close enough to the true solution. In this paper we show that by com-
bining two different types of numerical methods, one can produce a method
which can be started at any point and which, under fairly weak assumptions,

will converge to a (local) solution of the optimization problem no matter

how bad the starting point may have been.
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A GLOBALLY AND QUADRATICALLY CONVERGENT ALGORITHM
FOR GENERAL NONLINEAR PROGRAMMING PROBLEMS

s t
., Klaus Ritter and Stephen M., Robinson

. .
Michael J, Best , Jirgen Brauninger

1) INTRODOCTION, GENERAL DESCRIPTION OF THE METHOD

This paper presents an algorithm for the minimization of a nonlinear cbjective
function subject to nonlinear inequality and equality constraints. The distinguishing
features of the proposed method are that, under weak assumptions, it is guaranteed to
converge to a Xuhn-Tucker point for the given problem (Theorem 1) and, under somewhat
stronger assumptions, the rate of convergence is quadratic (Theorem 2).

The mothod is somewhat similar to a recently proposed method by Rosen [10]. Like
the Rosen method, the new method uses a penalty function to find a point in a neighbor-
hood of the optimum, and then switches to the method of Robinson [9) which, under
appropriate assumptions, gives the gquadratic rate of convergence.

In both Rosen's method and the method proposed herein, the penalty function is
used to locate a point in a neighborhood of the optimums. Robinson (9] has shown that
if his method is initiated with a point sufficiently close to the optimum, then con-
vergence will occur and, under appropriate assumptions, the rate of convergence will
be R-quadratic. If the penalty function parameter, say U, is required to approach
¢+ =, then its cholce in the first phase of either algorithm is critical. If u is
chosen to be too small, then the point constructed by the penalty function may be too
far from the optimum for Robinmon's method to convergce. Conversely, if u is chosen
to be too large, then although a point sufficiently close to the optimum will be con-
structed, the resulting penalty function will be numerically difficult and computa~

tionally expensive to minimize.
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Rosen's approach 18 to use a certain fixed value of U based on experimental
results from a number of small test problems. The penalty function problem is then
solved to produce a point which is then used to initiate Robinson's method. The
inherent difficulty in this approach is that the choice of u may be too small so
that the resulting point may not be sufficiently close to the optimum for Robinson's
method to converge. Rosen's method does not allow for this possibility.

The method proposed here explicitly allows for such a possibility in such a way
that under weak assumptions, convergence to a stationary point is guaranteed. Each
nonlinear constraint function is associated with its own pemalty function parameter.
These are initjally set to a suitably small value. The penalty function is then
minimized. The resulting point is then passed to Robinson's method. One or more
iterations of the Robinson method are then performed. After each such iteration,
Certain tests are performed. Essentially these tests are performed to determine
wvhether or not Robinson’'s method i{s converging, or, put another way, the tests deter-
mine whether or not the point found by the penalty function is in a suitably small
neighborhood of the optimum., If the tests are successfully passed, then an additional
iteration of Robinson's method is performed. If not, then certain of the penalty
function parameters are increased and a return is made to the penalty function method.
Under suitable assumptions, {t is shown that after a finite number of steps, these
tests are always successfully passed.

For a problem with nonlinear inequality constraints, the Robinson method sub-
problems contain linearizations of all such constraints and the resulting linear con-
straints are inequality constraints. In Rosen's approach, therefore, a significant
portion of the computational effort required to solve a linearly constrained subproblem
is devoted to determining which of these inequalities will be active at the optimum of
the subproblem. In the new method, however, only linear equality constraints are
passed to the Robinson subproblems as is proposed in {3). Certain tests are used to
decide prior to entering the Robinson subproblem, which of the linear inequalities

should be active. 1t is shown that after a finite number of steps, the solutions to
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the resulting subproblems are precisely those which would be determined from the
original Robinson method.

Since the Robinson-type subproblems contain linear equality constraints only, an
appropriate decrease in the computational effort required for their solution is
anticipated,

As in the case for Rosen's approach, any efficient algorithm capable of minimizing
a nonlinear objective function subject to linear equality constraints may be used to
solve both the penalty function and the Robinson subproblems. Of course, if the given
nonlinear problem contains linear inequality constraints as well as nonlinear con-
straints, the linear inequality constraints should be kept explicit in both the penalty
problems and the Robinson subproblems. This can be done in an obvious fashion and for
notational simplicity we do not give the details here. We do, however, consider linear
equality constraints explicitly.

For the solution of the linearly constrained subproblems, Rosen recommends the
algorithm of (7). Because of their established rapid rates of convergence, we also
suggest the algorithms in {2] and [8]) as alternatives.

Preliminary computational results are given in Section 6.

Rosen suggests the use of a squared external penalty function. The difficulty
with this is that it has discontinuous second derivatives and therefore, the rate of
convergence of the algorithm used to solve it, e.g. (2] or (8], may not be as fast as
possible. Here we use an external quartic penalty function which does have continuous
second derivatives, so that the rapid convergence rates of (2] and [B] will apply. We
point out that this particular type of penalty function may not be the most numerically
efficient. However, to take advantage of the rapid rate of convergence of [2] or [8],
a penalty function with continuous second derivatives should be used.

For any column vector x and matrix H, we use x' and H' to denote transpose,

respectively.




2) FORMULATION OF THE PROBLEM

We consider the model problem

PR: min{f(x)/x e M), xe¢ !:n, where
M o= (:lh‘(x) SO i=lc.m h(x) =0 iwmesl,...,meqe 3
h‘(x) - l;l - B‘. i="m+q+l,....m+q+p, and

f(x), hx (x)....,h-.q(:) are continuously differentiable.

The model problem thus has m nonlinear inequality constraints, g nonlinear equality
constraints and p linear equality constraints. We use the penalty function

m . mq
Plx;u ....,um) - fi{x) + X "1"‘1(')0’ + Z u

< th, (x) )
i1 fomtl

i

b‘(x) if h&(x):o
where hi")o -

0 if h‘(l) < 0.

We use the following notation for the linearized problems:
th (x;x ) i h (x.) ¢+ Vh (x )'(x~x) ,
i ) - el i) 3

meq
R(x:x).u)) 1o £(x) = 121 (u,)‘[h‘(x) - mimxjn '

LPH(x,,u,) 1o -m{m:;xj.u))lmimuj) L0 1% Li.iam

U\‘(xux’) =0, i=*=m+l,...,m+q*pl,

l}n(xj.u).t) = Mn(u(x:x,.u))lm‘(m:’) 0, 4% 2},

where 1 C {1,...,m+ q+ pl .

The algoritha requires a procedure to minimize a nonlinear objective function
subject to linear equality constraints. As previously mentioned, the algorithms in (2},
[7] and [8) are good candidates, but any efficient algorithm would suffice. We refer
to such a procedure as procedure VY. Procedure V¥ is to solve a problem of the form

* un(ux)lmlu.x’) =0, L€ 1},

where f(x} is any nonlinear function and 1 1is a specified index set. If C(x) is

equal to n(x::j.u,) and if the minimization problem has Xuhn-Tucker points, it is




assumed that procedure Y determines the Kuhn-Tucker point (x,u) which is closest

i C
to (:),u)). If ¢(x) is equal to P(x;ul.....umq) and I1C {m+qg+l,...,meq+p)

then it is assumed that procedure ¥ determines a Kuhn-Tucker point (;,;) such that

N;‘"l""‘"nkq) < y where the constant y is independent of ul""'“-«;; note that
this property surely holds if X is an optimal solution of (*). In connection with

(*) we use the notation

X = Helx)x, 1

u'n1 = 8, (ct.x, 1) for all i1, and

(;)1 =0 forall g1
Thus (G)‘ is the Xuhn-Tucker multiplier, or dual variable, associated with the linear-

ization of constraint 4. Note that these dual variables are the negatives of those

in ¢.9.., (9]).

We remark that the given linear constraints are unchanged by the linearization.

3} THE ALGORITHM

Throughout the paper we require the following assumption to be satisfied.

Assumption 1.
i) There is a number 7t such that f(x) > 1 for all x in the set

5'(x§h‘(x)-l;x-ﬂ‘-o,x--~q~l.....-4q‘p).

i4) ux(h‘(:). B PR !hx(x)l. f=m+l,...,msql>>
an Hnﬂ", xe S,
iil) ny e .
The first twc parts of the above assumption assure that the subproblems

o { poning s}
(**) min{Pix,u u-.q)]a «

possess optimal solutions. The last part is a necessary assumption for the primary

probles PR to have an optimal solution.

A precise statement of the algorithm for the solution of problem PR is as

follows.

e




Step O:

Step 1:

Step 2:

Step 3:

op

Choose an initial peint x_ and constants a > 0, 8 > 0. Set

0

!‘-(-chX....,l*qﬁp?.ul'...-u-‘q'l.3'l'°

and go to Step 1.
Use the procedure Y to compute
- e . . X
‘J'l Q(P(l)ul,. u.’q) :k b Gl
- ey . ' 23 e
and N)'l)i ei(wal. um) X, ) for i1¢ 1
Set k= j +1, replace j by 3J +1 and go to Step 2.
1 (max b o(x ), 4= 1,...m, Ih‘(xk)l. i=m+1l,....,m+q) <B go

to Step 3. Othervise replace u, by 104, if ix<m and h (x) > §

or i *m and Ih‘(r")l’a and go to Step 1.

Set
[ -4 (b (x) VB o Sl
W, = £ .
A -ln“(h‘(xl))3 for {=»m+1l,....m+q, v
(
: *x
ko= >
2" v
Determine ik such that 1§ ¢ ik if and only if { < m and

Iy )] < =tu), .
Set ‘u - ‘lku (m+1,...,m+q+pl. 1f ‘k has more than n
elements replace vy by “"'1' i=1,...,m+q, and gc to Step 1;
otherwise go to Step 4.
Use the procelure ¥ to solve the problem
min{H{x;x

Vb (xix ) =0, L€ L)

u
- i b
1f no Kuhn-Tucker point exists replace vy by lou‘. i=1,...,meq,

and go to Step 1: otherwise set

"01 - .("(lil’c“ }ox o‘\, .

- B




and

6 (Hix;x_,u ),x,,1 ) if fe¢ I
T e e e K
DAL N :
0 i S ¥ L
K
Set
s
’)01 '
uj#l

replace 3j with 3 + 1 and go to Step 5.

a%ep 9: If
i e ‘1 %
h', oy .j‘l'! > 0‘5)

(u,), 20 forall i1¢ 1

34 and

kl

u‘i(' 1%

y1%goy) SO forall if 1

13
then go to Step 4; otherwise replace ¥y by lOu‘. i=1l,....m+q,

and go to Step 1.

4) CONVERGENCE

The following three lemmas establish properties of the subproblems (**). They
are used to demonstrate the basic convergence theorem (Theorem 1). To simplify the
notation we set

P‘(') - P(x;u1l'....u )

meq, L
where we assume that the penalties u“ >1 for all { and L.
Lemma 1
For every i = 0,1,..., the proble=
Ilh“’!(lﬂl e 8)
has an optimal solution and, therefore, at least one Kuhn-Tucker point.

Proof: let x ¢ M. For every i set

S(x) = (x¢€ 'l',m < ’:‘i” .




Then

?
- A B 3. 4 & '
s = (xeslp o ctmicixes] [ mop e [ ;o< -1d,
- ‘ * i -
i=]1 i=m+]l

| and it follows from the continuity of Pl(u) and part (ii) of Assumption 1 that S(x)
| is compact. Thus the problem lin(?l (x)|x € S(x)} has an optimal solution which is
also an optimal solution to min{P, (x)|x € s},

Por £ = 0,),...¢ 1ot (;l.\.:l) be a Kuhn-Tucker point of the problem
lxn(Pl (x)|x ¢ S} obtained by procedure Y. Then the sequence (;l) has the following
properties.

Lemma 2

3 i) The sequence (;l) is bounded.

ook R

ii) For every « > 0 there is p(c) > 0 such that, for all &, the following
property holds.

12 i¢ {1,...,m} then u , > plc) implies hx(il):: ;

it
1f i¢ (m+1,...,m+ g} then ¥ 20(0) implies !hi(:-z‘)! 8
111) Every cluster point of {x,] is in M, provided

i
un(u“tﬂ “=1l,...m4ql += as 1=,

Proof:

i) For every (i, x is in the set

i
{x e s{p (x) < v}
which by part (ii) of Assumption 1 is bounded.

ii) Because f(x) >t for all x¢ S we have for { = 1,...,m,

- 4 - -
u“(hi(x.)‘) < P!('l’ - ”'l‘

e s Gl

: 1/4
h (x ) < - .
- oy Al uu

Similarly, for i =m ¢ 1,...,m+ q,

- - t V‘
lh‘(-‘)l < [’—-— :
Rt s

& -fe
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11i) Since the sequence l;‘) is bounded, it has at least one cluster point.
Suppose X is a cluster point and x f M. Then X does not satisfy
all constraints. Assume h (x) > 2c > 0. It follows that h (x,) > ¢

for infinitely many &. Since nin(uuli = l,...,mt+ql*= ag L=

this is a contradiction to part (ii) of the lemma. Thus X €M,

Lemma 3

Let -miuulx *=l,....m+ql »% as L += let x be a cluster point of
i;l? and suppose J C {0,1,...,}) 18 an infinite set such that ;l-; as L - =,
te J. Define I 4in such a way that, for { = l,...,m ¢+ q ¢+ p,

h‘(;) =0, i€ 1, and h‘(;l <0, L Fxs

1f the vectors \’h’(;). 1€ 1, are linearly independent then there are numbers u‘
such that

VE(x) = ] uVh (x), u <0 for L€ I, i<m
Ry i - z

and for every i ¢ I,
- l
-lu“(h,‘(x‘b.) u for { <m

5
1 J as Lew=, 2¢ 3,
- 3
-“‘u‘hx('!” *u‘ o L = m* LB *

Furthermore, h‘(;‘) “0 for if I and L€ J sufficiently large.
Proof: Because of the continuity of h‘(l) we have hx‘;t) <0 for i 1 and

Le J sufficiently large. Thus

WP (k) = VLX) + § 4w (h (k) )M (R, e -F &, (b (x)) P ()
b e iy N el T ¥ G B aeo Vg

il i=me]
i<m
Set
- 3
L B -‘"u‘hi('t‘o) for i¢ I, i «<m
u . --lu“(h‘(!‘l'))i for Lem* ls..metq.

Since ;‘ is a Xuhn-Tucker point of the problem un(?l(xilh‘(z) =0,

fi=mesq*l,....m+q+p! there are u i=me+qg+l,...,m+*q+p such that

i’

-9-




2 IO?OP =
”l“l) - uuvh‘(nl)
1=meqe]

Therefore, we have for t ¢ J sufficiently large,

v, - [

Yh (x,) = 0
e § %

it

fleecny - J u“'?h‘(;}ﬁj_ﬁ?t(;‘) -vtxflell ] u

(Vh, (x,) - " ) .
i1 w1 e .

it

Because the vectors 7h‘ (x), { € I, are linearly independent the sequence

\'u“. i¢ I, Le J) is bounded, Llet ue de1, be a cluster point of this sequence.

fve)y = J u " ll+0 as teoe tey
P Ty -

inplies

.

VE(X) » | u Vh (x) and u <0 for i
1 R ) >

Since the representation of V(x) in terms of Vh’(;) is unique, Yg
a8 L+, L¢ ).

We are now ready to present the basic convergence property of the algorithe as
follows.
Theores 1

Lot the sequence h,'s = {(x_,u.)] be generated by the algorithm, If at most

3

finitely many :, are computed by Step 1 then in’) converges at least linearly to a

Kuhn-Tucker point z - (;.3) of PR, 1If infinitely many :1 are determined by Step 1

then avery cluster point x of this subsequence is in M. If the gradiente of the
constraints active at x are linearly independent then there is u such that (x,u)
is a Kuhn-Tucker point.

Proof: Suppose only finitely many u, are computed by Step 1. Then it follows from
Step 5 that (c,b is a Cauchy sequence which converges at least linearly to some =2,

Furthermore, since m‘u i1x,) <0 forall 17 lt' l,q is a Kuhn-Tucker point

o

for W(t’;u’). By Corollary 1 in [9], 2 is a Kuhn-Tucker point of PR. The second




part of the theorem follows from lLemma 2 and lemma 3 because in this case

un(u“h ® lovsesm * Q) o=,

5)  QUADRATIC RATE OF CONVERGENCE.

In order to establish the rate of convergence of the method we require the follow-
ing additional assumption to be satisfied throughout the remainder of the paper.
Assumption 2

The sequence h,) - Huj.uj)l generated by the algorithm converges to a limit
point z - (;.Q-l) with the following properties,

i) The gradients of the conatraints active at x are linearly independent,

f.e., © is a Kuhn-Tucker point (Theores 1).
14) The st-ict complementary slackness condition is satiatiod at (5.8
i11) f(xm), h‘(l), i=1,....m % q are twice continuously differentiable in an
open neighborhood of x.
ivl The second order sufficiency conditions are satisfied at (x,9).
For 2z = (x,u) define
L e 4

rie) = (FE)' - ] (w

(x)*',ta) lh
i=1

(:).‘...(u).h.(x),h.‘l(x).....h (x))*

i 1 mepeq

It was shown in [6] that OTF(z) is nonsingular. GSet u = UW(;)-lU .

Prior %o demonstrating the main convergence rate result we require the following

two lemmas and theores.

Lesma 4.
let & = (x,u) be as in Assumption 2. Then there is u = w(2) > 0 such that the

following properties hold
1) If L<m and B (X) <O then Ih (xix)) <O for every
B € Bz, = {2 llz = 2ll < .

() It Le<m and W «< 0 for every 2z Blz,u).

L < 0, then (ul‘

i14) 1f 2 .(;.%u) and &liF(@)]] < u then there is 2 ¢ l(i.%u) such that

2 is the unique Ruhn-Tucker point of LPH(z) in l(i.%ﬂ.

11~
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Proof: The lemma follows from Lemma 1 in (9] and the proof of Theorem 2 in {91.
The following is a restatement of Robinson's result (9],
Theorem 2
There exist numbers & = §(z) > 0 and § > 0 such that for any starting point
;o ¢ B(z,8) the sequence (n,) in Robinson's algorithm exists and converges
R-quadratically to 2. In particular, there is some constant { such that
ey - 3l < oy @
Furthermore, for all 3 > 0,
gy = 2,0l < 32"
ul!ruj)ﬂ <u

lay - 3llc k.

Proof: This theorem is equivalent to Theorem 2 in (9). The last three inequalities

are not stated in that theorem but are derived in its proof.
The next result justifies our use of linear equality constraints rather than the

usual inequality constraints in mu,.u,.n.

Lesma S
1) et I(2)C {1,...,m+p+ gl be defined in much a way that i e I(z) if

and only if h‘(;) = 0., If Xk = then for all sufficiently large k the

set I determined in Step ) of the algoriths is equal to I(2).

ii) There is jo such that, for jljon LHNI’) and mu,. 1(2)) have

» * -
'jbl' where l”‘ and t,“

Kuhn-Tucker points obtained by applying procedure ¥ to mu’.uin and

Kuhn-Tucker points and = are the

. -
bAg

mu,! ., respectively.

i

1) Suppose b‘(;) © 0. For k sufficiently large we have h (x ) <0 and
(a), = 0. Thus [n )] > - (w), and (7 1. Now suppose u‘Go -0

and i < m. By the strict complementary slackness condition u'n‘*o.

12«
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Because hx“k) - hx(" and, by lemma 3, N\:,s . (u)‘ as k » =, we

-
have !h‘(xk)x (w), for X sufficiently large, i.e. 1€ 1.

{1) Choose 1} such that 3 >3  implies 2 ¢ B(Z, 34 ana wlrepll < v

3

Then it follows from part (iii) of Lemma 4 that u»u(z)) has a Yuhn-Tucker

g point and that i).; is the unique Kuhn-Tucker point of LPH(:,) in

l(l’. i-\.). we claim first that iju is also a Kuhn-Tucker point of

uuuj.nin. To prove this claim we have to show that

jorl%g) = 0, K¢ 1z .

‘ If 4f I1(2), then K (X) < 0 and, by part (i) of Lemma 4, 1in (x

(B0 =00 4 f 1@, and L (X

j‘l"j) < 0.

5 - - s - -
N)‘l,a 0 1 19 1tp). X2 - 1 1{z) and { < m, then h‘u)-O

and, by the strict complementary slackneas condition, u'n* € 0. Therefore

< 0 which implies

™hus

it follows from part (ii) of lessa 4 that ‘:')u’:

m‘(imu’» « 0, Now let 2z = (x,u) be any Kuhn-Tucker point of

umu’.uin in !(l,.%u). For every i f 1(z) it follows again from

part (i) of Lemma 4 that u:‘«i.x’) < 0, whereas for i¢ I(z), § <m,

the strict comsplementary slackness condition and part (ii) of Lemma § imply

(&)‘ © 0. Therefore, = is a Xuhn-Tucker point of Lo (z,) and |

- .
‘.‘)'l-'

.

341
We are now ready to demonstrate the rate of convergence of the algorithm, ;

Theorem )}
i} Step 1 of the algorithm occurs at most finitely often.

1) The sequence (:’) generated by the algoritles converges R-quadratically

to a Fuhn-Tucker point 2z of PR,

Proof:

PSSy

We first asswme that Step 1 occurs at most finitely often and show that then the
sequence (l’l converges R-quadratically. et ’l be such that ’l 2 ’0 as defined

in Lemma 5 and 5 > §, implies 2 ¢ B(z,8). We first prove that, for 3 3 3., the

3

set 1, used in Step 4 of the algorithm is equal to 1(2). Indeed let i¢ I(2), &<m.

-1




Then h‘ {x) = 0 and the strict complementary slackness condition and part (i3) of

Lemma 4 imply ( 0. Thus i€ I_. Conversely, if i I(2), then hlti) <0

%'y X

which by part (1) of Lemma 4 implies th(x ;x)) <0, i.e., 17 1. Therefore, we

101 k

conclude from part (ii) of Lemma 5 that, for 3 > )l' the sequence generated by the
algorithm is identical with the sequence in Robinson's algorithm which, by Theorem 2,
converges R-quadratically.

Now suppose Step 1 occurs infinitely often. let 3 be such that ’j'l is
determined by Step 1 of the algorithm. For 1 sufficiently large, ')01 satisfies the

conditions of Step 2 and, by Lemma 5, the set I = defined in Step 3 is equal

x X)OI
o I(z). Therefore, it follows from part (i) of Lemma 5 that 11‘2 is detormined

by Step 4 and is equal to the Kuhn-Tucker point obtained by applying procedure Vv to

LNz Hence, <0, i¢ iu' and 1h (x

(u’.z)‘ <
1

"')02 - 8’01"_‘_ 3.

302"30]) 0, 1y Xt. Furthermore,

This implies that for 3§ suffi-

’.,).
for j sufficiently large,

clently large the algoriths will remain in the cycle Step 4-Step 5. This contradiction
shows that our assumption that Step 1 occurs infinitely often is wrong. This completes

the proof of the theorems.

COMPUTAT IONAL RESULTS

In this section we present the results of numericul tests on a variety of problems.
The problems considered are taken from Himmelblau [5) and Asaadi [1].

Table 1| susmarizes the results. It is interesting to note that in all cases, only
a single penalty function iteration was required. The final accuracy achieved (maximum
of primal ard dual infeasibilities) was quite good.

All tests were performed on a CDC CYBER ~ 174 computer using the FTN compiler with
OPT = 2. Colville's standard timing program [4] executed in an average time of 6.144
seconds, and the standardized times given in Table 1 were computed using this time.

We point out that the results for Problem 2 of Colville are not as good as those

given in (9] (at least for the starting point for which convergence was obtained in [9]).

14~
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The reason for this is that the method presented here always begins with a penalty
function iteratiom and in some cases this may not be necessary. However, for real
problems with possibly bad starting data, it is likely to be safer to begin this way.

For the original Robinson method, convergence did not occur for a particular
initial point for Colville Test Problem 2 [9, p. 154]. However, convergence was
obtained for the method proposed herein, as indeed is predicted by the theory
(Theorem 1).

For the smaller test problems, the execution times should not be taken too liter-
ally but simply regarded as "small™. This is because their execution times are 8o
small that they are the same order of magnitude as the accuracy of the computer's

timing routine.

-18-




B S

-16-

‘(8] Morqiommi o @ “lo) O(11A193 = 3 *[1] (P0eTy = ¥o

o0 AP 3 S N

SMIT000¢ 153 40 3270838 YVIIN3NAR
Teicvi

300 Soyiseis 01Ci000s0; oo
o5y e 1 wiy ¢ t N 0 SRR 9000 2T s ] st 8 st Qi wliint
siEr” sl [ (317 4 1 - L] (e § ] st [ ] st (b1 ] e
519 "o “wt ™ (4 t - n-x LT SR L ] L] ot (] $ Ol olpitt
e 10" 8 w (4 t "R n-x LU SR S ] (] L] . ] O ten
oy e wa ou 2 1 -u - VOIS 202 TIT n o ® . [ v It
(&1 ur o “s t t - ol-m S 19rwYsic eot [} ¢ t [ ] o v ’
s " at ™ 13 1 ("8 - WEITRNY DOy ’ ° (] & ¢t v *
€ne” " w2 "2z H 1 1n-m K L 1 TR S | t (] L) 5 v ]
" s10° (1] ot 1 1 on-x 0 oty . (] ’ (] (3 v t
Wiy (£ at L] « 1 " e-n V(000000000 ¥ ¢ . . . » v 2
s 60" «a ] i t ® 0 (VoYY 1 [ ] : € : v 1
™y ) ($.308) S0ii0n(0a) $00110006] S0 10s01] SeRii0an] A I0INeesN] MG SRien sejideley Lijeees;  Ayjiem) My emew] Aoy ]
POl perpenis Bmy, 2] PR WM, weimieny  fijeeay 1 vy (Smiag Y 1%eiy  Joowijeay soou)vey 00w Seemi) SO|ONIN SAep ERieNey




(1

14)

{S}

{6l

(7}

i8]

9]

(10}

&=

REF ERENCES

Asaadi, J., "A computational comparison of some non-linear programs“, Mathematical

Programming 4, 1973, pp. 144-154,

Best, M.J. and Ritter, K., "A class of accelerated conjugate direction methods
for linearly constrained minimization problems”, Mathematics of Computation, 30,
1976, pp. 478-504.

Brauninger, J., "A modification of Robinson's algorithm for general nonlinear

prograsming problems requiring only approximate solutions of subproblems with

linear equality constraints”, in: Optimization Techniques (ed. J. Stoer), lecture

Notes in Control and Information Sciences 6, 7, Springer-Verlag, Berlin 1977.
Colville, A.R., "A comparative study on nonlinear programming codes™, IBM, New
York Scientific Center, Report No. 320-2949, 1968.

Himmelblau, D.M., "Applied nonlinear programming™, McGraw-Hill, New York, 1972.
MoCormick, G.P., “Penalty function versus nonpenalty function methods for
constrained nonlinear prograsming problems”, Mathematical Programming, 1, 1971,
pp. 217-238,

Murtagh, B.A. and Saunders, M.A., "Nonlinear programming for large, sparse
systems”, Technical Report 50L 76-15, Systems Optimization Lab., Stanford,
August, 1976,

Ritter, XK., "A superlinearly convergent method for minimization problems with
linear inequality constraints®, Mathematical Programming, 4, 1973, pp. 44-71.
Robinson, S.M., "A quadratically-convergent algorithm for general nonlinear
programming problems™, Mathematical Programming, 3, 1972, pp. 145156,

Rosen, J.B., "Two-phase algorithm for nonlinear constraint problems”, Technical

Report 77-8, Computer Science Department, University of Minnesota, 1977.

MIB/JB/KR/SMR: ed

-]17=-




VI S

;
§
g

EPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

7 GOVY ACCESS qu*—m‘ y 1200 NUMBER

mer

6. PERFORMING ORG. REPORY NUMBER

2 KT PO AR Nt i S _TYPE OF REPORT A P OD COVERED

4

5/ A GLOBALLY AND gummmcuu gomncsm'L——-; Summary Répes},s/ no specific
RITHM FOR GENERAL NONLINEAR PROGRAMMING | iod

PROBLEMS,

v ————
————

#
. AUTHOR(®) ®. CONTRACT OR GRANT NUMBER(s)
“ s

e REEEG ]
Michael J. ﬁest, :ﬁ!ﬁéh inger, A“¢%WCMT
Klaus Ritter amd Stephen M. inson // f T Zj

B SRR 5 VNS ;-ucsn-zesgg E:
. PERFORMING ORGANIZATION NAME AND ADDRESS N T PROGRAM ELEMENT, PROJECT, TASK

Mathematics Research Center, University of Ho‘,’;:‘u‘,,{:";,:;;‘,','e",“";'f'

610 Walnut Street Wisconsin | Mmathematical Programming

Madjson, Wisconsin 53706 and Operations Research

1. CONTROLLING OFFICE NAME AND ADDRESS /‘ L 8

'] g o]
(See Item 18 Below) =" I'13. NUMBER O GES
17
"TT  WONITORING YOENCY NAME & ADDRESS(I! different from Controlling Office) | '8. SECURITY CLASS. (of thie report)
: } UNCLASSIFIED

k OIC&,Atll'lCAWON‘DONORADING
SCHEDULE

Hm-lfu-ﬁou STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT fof the sbetrect entered In Block 20, il ditterent from Report)

10. SUPPLEMENTAAY NOTES
U.S. Army Research Office National Research Council National Science

P.O. Box 12211 Montreal Road Foundation
Research Triangle Park Ottawa, Ontario KI1A OR6 Washington, D.C. 20550
North Carolina 27709 Canada

19. XEY WORDS (Continue on reverse side Il necessary and identily by block number)

Nonlinear programming algorithms, penalty algorithms

20. ABSTRACT (Centinue en reverse oide If y and Identify by block bor

This paper presents an algorithm for the minimization of a nonlinear
objective function subject to nonlinear inequality and equality constraints.
The proposed method has the two distinguishing properties that, under weak
assumptions, it converges to a Kuhn-Tucker point for the problem and under
somewhat stronger assumptions, the rate of convergence is quadratic. The
method is similar to a recent method proposed by Rosen in that it begins by

(continued)

DD , 5n>y 1473  coimiow or -novuuom:a UNCLASSIFIED
2¢ se

CURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

e




using a penalty function approach to generate a point in a neighborhood of the

optimum and then switches to Robinson's method. The new method has two new features

not shared by Rosen's method. First, a correct choice of penalty function parameters

is constructed automatically, thus guaranteeing global convergence to a stationary

point. Second, the linearly constrained subproblems solved by the Robinson method
normally contain linear inequality constraints while for the method presented here,

only linear equality constraints are required. That is, in a certain sense, the \
new method "knows" which of the linear inequality constraints will be active in the
subproblems. The subproblems may thus be solved in an especially efficient manner.

Preliminary computational results are presented.

T, e s I I i i S et S Wamethate ) Py A VRN 1 I Pl




